Techniques for Active Learning in CS Courses

Tom Briggs
Department of Computer Science
Shippensburg University
thb@ship.edu

Abstract

Studies show that active learning promotes improved long-term retention of course material in students.
Research suggests that CS students tend to have learning styles that make an active environment almost
critical to their successful mastery of material. This paper demonstrates the effects of a novel lab
experience in an objects-first Computer Science 2 course. Our lab is a novel departure from traditional
lab based courses, in that it promotes student self-learning and interleaved into the class lectures. We
show through assessment comparison that an active learning improves student grades, comprehension,
and satisfaction with the course.

INTRODUCTION

Active learning is a common technique used to improve students comprehension and retention of material
[1], [4]. The most common application of active learning described in the CS education literature is in
introductory programming courses [3], [7]. In these introductory courses, techniques such code review,
debugging sessions, problem solving, and peer collaboration are commonly used to show improvement in
the comprehension and long-term retention rates of material. Research shows that students involved in an
active learning environment demonstrate a higher rate of retention and mastery of the material and lower
drop out rates [3]. Another study shows that active learning promotes as much as a 70% increase in the
amount of long-term retention of knowledge [4]. Students of most disciplines demonstrate better mastery
of the material when they are able to interact with it. Research in learning styles assessment suggests that
it is especially true for computer science students [6]. We will show how a novel lab experience and other
classroom modifications can create an active learning environment and lead to an improvement in student
outcomes.

Felder-Silverman Index of Learning Styles
The Felder-Silverman Index of Learning Styles breaks learning styles into four groups [5]:

e Active and Reflective

Sensing and Intuitive

Visual and Verbal

Sequential and Global

Active learners prefer an environment that enables them to learn by using the knowledge such as
writing programs or discussing material with their peers. Reflective learners prefer an environment that
enables them to cogitate over the material. Sensing learners prefer learning facts and concepts, intuitive
learners prefer learning possibilities, applications, and relationships. Visual learners prefer learning from
material they can see: charts, figures, and demonstrations. Verbal learners prefer words, either spoken or
written. Sequential learners follow material in a step-by-step sequence. Global learners tend to learn by
putting material into a global context and seeing how the material relates, and then they will “get it.” [5].

In [6], Thomas, Ratcliffe, et.al, report the results of administration of the Felder-Silverman survey
to 107 students in an introductory CS course. The results show a near even split for sensing/intutitive
and sequential/global. There was a tendency towards active learning (55%) over reflective (45%). The
strongest difference was visual (83%) vs. verbal (17%). The results of the survey add a quantitative
dimension to the argument in support of active learning. If CS students tend to be active and visual
learners, then one of the most effective learning environments is one where they are able to interact with
and visualize the material in some fashion. In other words the need an active learning environment.

Debug Contraller

Code Window

e Varizble

Explorer

~————— Output Conscle

G et

Figure 24 - Debugging Window
8. Click on Run on the main menu bar

9. Click on Step Over. Note that the keyboard short cut for this is
“F6”. Pressing F6 is much easier to do than clicking on the run

Figure 1: Example Lab Exercise Demonstrating Eclipse Techniques

Active Learning Techniques

Active learning does not require a large amount of preparatory work. Felder proposes the following simple
approach to incorporating active learning in a class[2]. First, ask the students to interact with the material,
for example, ask them to solve part of a problem, derive a piece of code, sketch out a proof. Next, ask
them to break up into groups, and tell them how long they have to solve the problem. Finally, after the
time is expired, call on a few groups to share their solutions.

The important part of this strategy is that incorporating this break in the flow of the class allows
students to refocus their attention. Students are able to interact with their peers and try out their conceptual
view of the material and get immediate feedback on their understanding of the material. Finally, pairing
with peers helps academically weak students begin to comprehend. Felder suggests that even a five minute
active period during a 50 minute lecture can change the dynamic of the entire lecture and keep students
better engaged in the material.

AN ACTIVE APPROACH TO COMPUTER SCIENCE 2

At Shippensburg University, Computer Science 2 (CS2) is four credits and is the second course in the core
of our program. The typical student is a freshman or sophomore CS major. The course objectives include
using advanced data structures, abstract data types, and object oriented design. The course is taught
using Java and the Eclipse IDE in an objects first approach. In objects first, object design, inheritance,
abstraction, and design patterns are integrated into to the traditional data structures and ADT material.

The active techniques used in this course include many of the same techniques that appear in the
literature such as peer review, paired programming, and small group problem solving [3]. One of the
main techniques was a student lab manual that we created to promote an active environment, to fill gaps
in the material in the text book, and to deliver material that appealed to a wider range of learning styles.
The novel aspects of the lab manual include task based reference sections, interactive lecture/workshop
labs, and selected source code examples.

Lab Manual

The lab manual organized additional course material into a single print volume containing source code
examples, screen shots, sample output, and guided activities that appealed to the most common learning
styles (visual and active) [6]. The lab manual was divided into four primary seclexisiology Manual
Reference SectipGuided LabsandSample CodeThe final printed manual was 270 pages. The manual
was sold by the campus book store as a required text to supplement the text book. The cost of the manual
was nominal and recovered the printing and binding fees.

The Technology Manual contained instructions for using the various development environments, com-
puter systems, and off-campus resources. For example, students used Sun workstations in the course, and

Part One - Efficient Recursion

Programming using Recursion can be an efficient method of programming. Often, the
resulting code is small, and very elegant. In this exercise, this elegance is exploited in
one of the earliest algorithms ever written.

Euclid’s algorithm determines the Greatest Common Divisor (GCD) between two
numbers. There are many important mathematical and practical implications of this
algorithm; and there has been significant mathematical research done in this area. On
area in particular that depends on such computations is cryptography.

Figure 2: Example Introduction from ‘Lab 4 - Recursion’

Debug with “Step Into” and “Step Over”
As we saw in the previous exercise, break-points are useful to stop the execution of the
program. A program can have multiple break-points to stop the program at various
points during its execution. Furthermore, a programmer can step through her code, line
by line, to examine the effect each line of code has on the state of the program. This
exercise explores using break-points and step control to examine the behavior of the
program.
1. Go to the Rectangle class, set a second Breakpoint on the first line of code in the
Rectangle constructor (the super call).
2. Before running your program with the debugger, what do you expect will happen? (write
it below):

3. Click on the “bug icon” again. The debugger will restart your program. Did the
debugger stop where you expected it? Why did the debugger stop where it did?

Figure 3: Example Instruction from ‘Lab 2 - Using Eclipse’

the technology section included instructions using Sun’s windowing manager (CDE). The technology sec-
tion also included detailed step by step instructions for using Eclipse. The instructions were organized by
the tasks the students would encounter. Examples inclaggort External “jar” File , Recover Previous
Versions of FilesAutomating Getter and Setter Method Creation

Labs

The lab manual contained eleven lab exercises and three projects. Each lab corresponded to a chapter of
the text book, and augmented the material in the text. The labs followed a progression such that the early
labs were very specific and included detailed step-by-step instructions while later labs were very general,
and involved more independent problem solving skills. The labs were designed to instruct and challenge
student perceptions of the material and to develop students through problem solving and programming
skills.

During the lab portion of the class, students worked in teams of two or three to complete the given
tasks. Students were encouraged to carry on discussions between themselves and other lab groups, and
frequently discussed challenging parts of the material with each other. Individually, students also often
used the time to ask questions they were afraid to ask in front of the whole class.

Our labs are a novel departure from the traditional in-class lab. The goal was to interleave description
with interaction. Each lab starts with a brief, global overview of the material and important topics to
be addressed in the lab (see figure 2). Each step of the lab presents the student with some background
narrative or sample code, and asks them to actively engage with the material in some way, such as solving
a problem, implementing some code or predicting the result of some action (see figure 3). Finally, there
are a series of exercises at the end of each lab that asks students to further explore and extend the lab
material (see figure 4).

The lab manual contained the following labs. Many of the labs included printed versions of complete
or partial source code which students had to enter into the computer. This helped keep students organized
and on-task, and it also presented the students with examples of well-written source code to use as a
reference. The requirement that students manually entered the code (as opposed to downloading source
code files) forced them to read the code carefully.

Hello World Introductory lab to get students familiar with environment (Sun CDE).

Using Eclipse Walk-through several features of Eclipse, such as entering code, setting the run-time en-
vironment, building and running programs, and using the integrated debugger.

Programming with Files Basic file I/O, including directory access, text file I/O, binary data streams, and
object data streams. In part one, students were guided through an exercise to make their own version

Exercises

1. Lookup up the Double.parseDouble() method in the Java API documentation.
Re-write the section of code that converts the string to double to check for a
malformed string (i.e. a non-numeric string). (Hint: check for an exception).

Figure 4: Example Exercises from ‘Lab 3 - Input and Output’

of the DIR command using the object oriented design, polymorphism, loop iteration, arrays, and
string and numeric formatting. In part two, students were guided through an exercise to read and
write text files containing descriptions of shapes, and then use that information in a computation.
Finally, in part three, students use built-in Java packages to read serialized object data from a file
demonstrating the utility of the Object hierarchy.

Recursion Several aspects of recursion, including code simplicity, efficiency, tail recursion, and recursive
traversal of a hierarchical data structures. Part one explores the simple elegance of recursion with
Euclid’s GCD algorithm. In part two, students experience the inefficiency of repeated recursive
calls with the Fibonacci sequence. Part three highlights the relationship to certain types of loops
and tail recursion by rewriting loops into recursive methods and vice versa. Finally, part four uses
the directory listing program from the previous lab and extends it to recursively descend into sub-
directories. This last part is interesting because students are familiar with the concept of a directory
tree and are able to grasp the effectiveness of recursion to follow this hierarchy.

Object Oriented Design This lab builds on the previously developed simple UML and class diagrams,
and asks students to develop UML for a more complex system. Students were introduced to an op-
tional UML diagramming package, Poseidon. The lab presents students with a detailed description
of a problem and a related set of business rules, and they work in larger teams to develop the design
structure for the problem. At the conclusion of the lab, each group presented its solution, and the
other groups (having worked on the same problem) evaluated the solutions.

Containers The purpose of this lab was to make students familiar with the operations defined by the
java.util.Container class. Students completed code to implement a simple array list data
structure and instantiated the abstract methods of the Container class.

Performance The first part of this lab asked students to add benchmarking instrumentation to existing
code to clock its run-time. The second part asked students to compare the runtime of their array
list that was developed in the previous lab and several other Container objects. The third part asked
students to compare the runtime of several different sorting algorithms. In each case, students were
asked to collect run-time statistics from each different data structure or algorithm and to create a
graph showing the results. These graphs were then compared against plots of the standard growth
functions.

Table Driven Programs This lab explored dynamic programming and table driven programs through
Floyd-Warshall's All-Pairs Shortest Path algorithm.

Dynamic Data & Linked Lists Students were guided through implementation of a singly linked list data
structure. Students then compared the performance of their implementation to the built-in Java
java.util.LinkedList andjava.util.Vector classes. This lab also introduced basic
unit testing (using JUnit) as a development aid. This helped students ensure their code was working,
and simultaneously, allowed students to use the collection as well as implement it.

Stacks and Priority Queues Students explored using stacks and priority queues by building a basic
event simulator.

Maps Students used thiava.util. HashMap collection class to implement a dictionary lookup /
spell checker class.

Active Example - Algorithm Runtime and Performance

The active approach was used to tie the theory of Big-Oh notation to its empirical runtime. One fifty-

minute class was used to introduce the material. Topics included introduction to Big-Oh, growth classes,
and runtime of common operations. Students were asked to work in small groups to examine pairs of
sample code fragments and predict which would be faster. After a few minutes, each group presented its

Part Four — Vector — A Java Collection
Instructions

1. Instrument the driver class to collect timing information for the two
sets of operations: adding data and finding data in it.

2. Change the number of numbers added to the array and record the
resulls on a piece of paper.

3. Finding all occurrences of a number is an operation that requires
O(n) time to complete. What about adding numbers to the array?
How much time does it require?

Table 3 - Benchmark Results

Figure 5: Students make empirical observations throughout the lab.

solutions and a brief discussion period followed. The professor facilitated the discussion by encouraging
students to explain their predictions, while keeping order during the discussion. The class ended with an
instructor lead demonstration of techniques to instrument a program to collect its run-time. The next two
class meetings were devoted to the in-class portion of the lab that corresponded to the material.

The first part of the lab instructed students to devise methods to observe and compare the runtime
behavior of certain data structures to their theoretical behavior. The second part asked students to code
and execute their tests and record their empirical results using their own coded data structures and selected
members of the Java Collections API (see figure 5). As an exercise, students were then asked to review
their recorded measurements, make graphical plots of their data and then compare these plots with the
plots of common Big-Oh functions. In several cases, students found unexpected differences between the
theory and the evidence. For example, performance of the ‘LinkedList’ structure showed larger jumps
in run-time than anticipated. Students were directed to the source code appendix of the lab manual
to examine relevant source code samples of the Sun Java API to help explain contradictions in their
results. They were able to see how professional programmers implemented the same data structures
discussed in the course. This type of interaction helped students remain active while challenging them to
explain empirical results that were not supported by the theory and help build strong mental models of
the material.

At the end of the second lab day, the homework portion of the lab was assigned to be due the following
week. The fourth and final day spent on the material was designed to summarize the lab. The professor
facilitated a discussion of the observations of the labs and helped students resolve lingering questions.
The lecture concluded with a discussion of the fundamental importance of studying the runtime behavior
of algorithms and the practical limitations of computability.

Pitfalls of our Approach

Adopting an active learning environment created a dynamic, free and open learning environment. Stu-
dents quickly adapted to an environment that encouraged them to openly express themselves, rewarded
participation, and stimulated their interest in the material. This approach did create other, unforseen,
challenges. Here, we discuss these challenges and suggest techniques to avoid them.

The first challenge is to keep everyone involved. Student teams tend to have one “driver” and one
“watcher.” Experientially, this is especially true when there is a significant difference in the comprehen-
sion level of the two students. One technique, borrowed from extreme programming (XP), is to force
drivers to switch every ten minutes. Another technique is to make students pair up differently for each
lab.

Another challenge is to keep students focused on task. Students quickly adapted to the active environ-
ment, and thrived in the open lab experience, where they were able to cooperatively work on a solution to
a task or problem. However, there was a tendency for students to drift into unrelated topics. The instructor

Grade | Fall 2003 | Spring 2004
A 23% 26%

B 9% 19%

Cc 14% 26%

D 23% 7%

F 20% 11%

W 11% 11%

Table 1: CS2 Final Grades Comparison

needs to follow the conversation of the student groups, and, when appropriate, gently reel them back into
the task at hand.

Absenteeism became a major problem in our environment. Students worked on Sun workstations
which required them to log in, and store their files in a students home directory. Inevitably, one of the
students who “owned” the files would not be in class, and the other team member would not have a copy
of the files. To help mitigate this challenge, attendance penalties were added to later syllabi, and students
were required to share files with each of their team mates at the end of class.

RESULTS

The results compare two Computer Science 2 courses, one in Fall 2003 and the other in Spring 2004.
Both courses had the same instructor, textbook, classroom resources, similar enrollments (34 and 42
respectively) and student backgrounds. One difference is that four students in the Spring were repeating a
failure from the previous Fall. The conventional teaching methods used in the Fall such as lectures, labs,
and homework assignments that worked well for traditional structured programming were not well suited
for the objects first approach. Students in the course were frequently frustrated with the complexity and
scope of the material, and the general tone of the course was largely negative.

An end of term post-mortem analysis of the results of the Fall 2003 course showed that there were
problems. The student’s final grades (Table 1) show that nearly one-half of the students either dropped out
(W), failed (F), or received a poor grade (D). Student feedback, collected through a standard University-
wide ‘student satisfaction’ survey, included statements such as “projects were too large and complex” or
“spend less time covering logic and more time programming.”

A similar end of term post-mortem of the Spring 2004 course which relied on the active techniques
shows a moderate improvement in the final grades. Student feedback is the clearest endorsement. One
student responded that the most positive aspect of the course is that the “labs get really involved and really
test your skills” and another wrote “this is more hands on and challenging than any other CS course I've
taken previously, which really helps [me] further understand the subject matter.”

The active learning environment in Computer Science 2 helped transform the class into an interesting,
challenging, and interactive environment. The effort that was put into reworking the course and assem-
bling the manual was well worth the end results. This technique was effective, and well liked by the
students.

CONCLUSIONS

Active learning environments are an effective style of teaching. Research suggests that active learning is
especially effective for CS students who tend to be visual/intuitive learners. Techniques such as frequent
in-class problem solving, lab sheets and discussions were used to create an active environment to appeal
to a broad range of learning styles. The active learning approach helped students move up from the lower
levels of Bloom’s taxonomy (simple knowledge and comprehension) into the highest levels (analysis,
synthesis, and evaluation). Students attained a greater level of understanding of the material because they
had the opportunity to interact with it demonstrated through test scores and student feedback. Students
were guided through the development of a hypothesis, testing their particular hypothesis, and explain-
ing how the results support or refute their theory. This process helps students test their knowledge and
understanding of a problem.

There is strong evidence in support of the efficacy of these methods. Student outcomes assessment
shows that there was an improvement as a result of these techniques. Challenging students to use the
scientific method to develop and test hypotheses changed the dynamics of the class, and helped even
weaker students actively participate and engage in the material. Standard student evaluation instruments

asked students to identify the most positive aspects of the course. Over 60% of responses listed the
in-class labs and class discussions as the most positive aspects of the course.

Active learning techniques can improve the dynamics of a class. The techniques appeal to a variety
of preferred learning styles and remove impediments to cognitive processing. Most importantly, we are
a publicly funded liberal arts university, and each of these techniques was developed and employed with
little cost beyond the class preparation time of the instructor.

Future work will include development of new techniques and application to a wider variety of courses,
including Operating Systems and Computer Organization. Active learning creates an environment that
helps students share the instructor’s enthusiasm for the material and builds confidence in the students.

References

[1] Owen Astrachan. Concrete teaching: hooks and props as instructional technoldGyCSE '98:
Proceedings of the 6th annual conference on the teaching of computing and the 3rd annual conference
on Integrating technology into computer science educapages 21-24. ACM Press, 1998.

[2] R. M. Felder and R. Brent. Learning by doinghem. Engr. Educatiqr87(4):282—-283, Fall 2003.

[3] Scott Grissom and Mark J. Van Gorp. A practical approach to integrating active and collaborative
learning into the introductory computer science curriculum.Ptaceedings of the seventh annual
consortium on Computing in small colleges midwestern confergragees 95—-100. Consortium for
Computing Sciences in Colleges, 2000.

[4] Jeffrey J. McConnell. Active learning and its use in computer scienc€li@SE '96: Proceedings
of the 1st conference on Integrating technology into computer science edyqetges 52-54. ACM
Press, 1996.

[5] K. Silverman R. Felder. Index of learning stylels. World Wide Web., February 2005.

[6] Lynda Thomas, Mark Ratcliffe, John Woodbury, and Emma Jarman. Learning styles and perfor-
mance in the introductory programming sequenceSIBCSE '02: Proceedings of the 33rd SIGCSE
technical symposium on Computer science educagiages 33—-37. ACM Press, 2002.

[7] Henry M. Walker. Collaborative learning: a case study for csl at grinnell college and austin. In
SIGCSE '97: Proceedings of the twenty-eighth SIGCSE technical symposium on Computer science
education pages 209-213. ACM Press, 1997.

